
Chapter 29

Faraday’s Law



Electromagnetic Induction

• In the middle part of the nineteenth century 
Michael Faraday formulated his law of induction. 

• It had been known for some time that a current 
could be produced in a wire by a changing 
magnetic field. 

• Faraday showed that the induced electromotive 
force is directly related to the rate at which the 
magnetic field lines cut across the path.



Faraday’s Law

• Faraday's law of induction can be expressed as:

• The emf is equal to minus the change of the 
magnetic flux with time.

dt
d B





Magnetic Flux

• The magnetic flux is given by:

B B dA   




Faraday’s Law

• Therefore the induced emf can be expressed as:

d B dA
dt

   




Faraday’s Law for Simple Cases

• If the magnetic field is spatially uniform and the 
area is simple enough then the induced emf can be 
expressed as:

dAB
dt

 



Example

• A rectangular loop of wire has an area equal to its 
width (x) times its length (L). 

• Suppose that the length of the conducting wire 
loop can be arbitrarily shortened by sliding a 
conducting rod of length L along its width. 

• Furthermore, suppose that a constant magnetic 
field is moving perpendicular to the rectangular 
loop. 

• Derive an expression for the induced emf in the 
loop.



A sliding rod of length L in a 
magnetic field.



Solution

• If we move the conductor along the 
conducting wires the area of the loop that 
encloses the magnetic field is changing with 
time. 

• The amount of change is proportional to the 
velocity that which we move the rod. 



Solution cont.

• The induced emf depends on the magnitude of the 
magnetic field and the change of the area of the 
loop with time.

dt
dxBL

dt
dAB 



Solution cont.

• Since the length L 
remains constant the 
width changes as: vdx

dt


vBL• Then the induced emf 
is:



Example

• Suppose the rod in the previous figure is 
moving at a speed of 5.0 m/s in a direction 
perpendicular to a 0.80 T magnetic field.

• The conducting rod has a length of 1.6 
meters. 

• A light bulb replaces the resistor in the 
figure. 

• The resistance of the bulb is 96 ohms.



Example cont.

• Find the emf produced by the circuit,
• the induced current in the circuit, 
• the electrical power delivered to the bulb,
• and the energy used by the bulb in 60.0 s.



Solution

• The induced emf is given by Faraday’s law:

   v 5.0 / 0.8 1.6 6.4BL m s T m V   



Solution cont.

• We can obtain the induced current in the circuit by 
using Ohm’s law.

AV
R

I 067.0
96

4.6









Solution cont.

• The power can now be determined.

   WVAIP 43.04.6067.0  



Solution cont.

• Since the power is not changing with time, then 
the energy is the product of the power and the 
time.

   JsWPtE 260.6043.0 



The Emf Induced by a rotating 
Coil

• Faraday’s law of induction states that an emf is 
induced when the magnetic flux changes over 
time. 

• This can be accomplished 
• by changing the magnitude of the magnetic field, 
• by changing the cross-sectional area that the flux 

passes through, or 
• by changing the angle between the magnetic field 

and the area with which it passes.



The Emf Induced by a rotating 
Coil

• If a coil of N turns is made to rotate in a magnetic 
field then the angle between the B-field and the 
area of the loop will be changing. 

• Faraday’s law then becomes:

dt
dNAB

dt
dNAB

dt
demf B  sincos


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Angular Speed

• The angular speed can 
be defined as:

dt
d 

t • Then integrating we 
get that:



The Emf Induced by a rotating 
Coil

• Substitution of the angular speed into our relation 
for the emf for a rotating coil gives the following:

tNAB  sin



Example

• The armature of a 60-Hz ac generator 
rotates in a 0.15-T magnetic field. 

• If the area of the coil is 2 x 10-2 m2 , how 
many loops must the coil contain if the peak 
output is 170 V?



Solution

• The maximum emf 
occurs when the sin t 
equals one. Therefore:  NBAmax

  13776022  sHzf 

• Furthermore, we can 
calculate the angular 
speed by noting that 
the angular frequency 
is: 



Solution cont.

• The number of turns is then:

    150
377100.215.0
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
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N






Another Form

• Suppose the have a stationary loop in a changing 
magnetic field.

• Then, since the path of integration around the loop 
is stationary, we can rewrite Faraday’s law.

BdE ds
dt

 
   

 
�



Sliding Conducting Bar

• A bar moving through a uniform field and the 
equivalent circuit diagram

• Assume the bar has zero resistance
• The work done by the applied force appears as 

internal energy in the resistor R



Lenz’s Law

• Faraday’s law indicates that the induced 
emf and the change in flux have opposite 
algebraic signs

• This has a physical interpretation that has 
come to be known as Lenz’s law

• Developed by German physicist Heinrich 
Lenz



Lenz’s Law, cont.

• Lenz’s law: the induced current in a loop is 
in the direction that creates a magnetic field 
that opposes the change in magnetic flux 
through the area enclosed by the loop

• The induced current tends to keep the 
original magnetic flux through the circuit 
from changing



Induced emf and Electric Fields

• An electric field is created in the conductor as 
a result of the changing magnetic flux

• Even in the absence of a conducting loop, a 
changing magnetic field will generate an 
electric field in empty space

• This induced electric field is nonconservative
– Unlike the electric field produced by stationary charges



Induced emf and Electric Fields

• The induced electric field is a 
nonconservative field that is generated by a 
changing magnetic field

• The field cannot be an electrostatic field 
because if the field were electrostatic, and 
hence conservative, the line integral of E.ds
would be zero and it isn’t



Another Look at Ampere's Law

• Ampere’s Law states the following:

IsdB o 



Another Look at Ampere’s Law

• Thus we can determine the magnetic field 
around a current carrying wire by 
integrating around a closed loop that 
surrounds the wire and the result should be 
proportional to the current enclosed by the 
loop.



Another Look at Ampere’s Law

• What if however, we place a capacitor in 
the circuit? 

• If we use Ampere's law we see that it fails 
when we place our loop in between the 
plates of the capacitor. 

• The current in between the plates is zero 
sense the flow of electrons is zero. 

• What do we do now?



Maxwell’s Solution

• In 1873 James Clerk 
Maxwell altered 
ampere's law so that it 
could account for the 
problem of the 
capacitor.



Maxwell’s Solution cont.

• The solution to the problem can be seen by 
recognizing that even though there is no 
current passing through the capacitor there 
is an electric flux passing through it. 

• As the charge is building up on the 
capacitor, or if it is oscillating in the case of 
an ac circuit, the flux is changing with time.



Maxwell’s Solution cont.

• Therefore, the expression for the magnetic flux 
around a capacitor is:





dt

dsdB E
oo



Maxwell’s Solution cont.

• If there is a dielectric between the plates of a 
capacitor that has a small conductivity then there 
will be a small current moving through the 
capacitor thus:





dt

dIsdB E
ooo 



Maxwell’s Solution cont.

• Maxwell proposed that this equation is valid 
for any arbitrary system of electric fields, 
currents, and magnetic fields.

• It is now known as the Ampere-Maxwell 
Law.

• The last term in the previous equation is 
known as the displacement current.



Magnetic Flux Though a Closed 
Surface

• Mathematically, we can express the features of the 
magnetic field in terms of a modified Gauss Law:

 
S

AdB 0




Magnetic Flux Though a Closed 
Surface cont.

• The magnetic field lines entering a closed 
surface are equal to the number of field 
lines leaving the closed surface. 

• Thus unlike the case of electric fields, there 
are no sources or sinks for the magnetic 
field lines.

• Therefore, there can be no magnetic 
monopoles.



What Have We Learned So Far?

• Gauss’s Law for 
Electricity.  

S o

encqAdE




0
S

AdB


• Gauss’s Law for 
Magnetism.



What Have We Learned So Far?

• Faraday’s Law. 



dt

dsdE B





dt

dIsdB E
ooo • Maxwell-Ampere's 

Law.

• The four previous equations are known as Maxwell’s 
equations.



Differential Calculus

• We can express 
Maxwell’s equations 
in a different form if 
we introduce some 
differential operators.
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Gauss’s Theorem, or Green’s 
Theorem, or Divergence Theorem

• Consider a closed surface S forming a 
volume V.

• Suppose the volume is of an incompressible 
fluid such as water.

• Imagine that within this volume are an 
infinite amount of infinitesimal faucets 
spraying out water.



• The water emitted from each faucet could 
be represented by the vector function F.

• The total water passing through the entire 
surface would be:

S

F dA


�



• This quantity of water must equal the total 
amount of water emitted by all the faucets.

• Since the water is diverging outward from 
the faucets we can write the total volume of 
water emitted by the faucets as:

 
V

F d 




• Therefore, the total water diverging from 
the faucets equals the total water passing 
through the surface.

• This is the divergence theorem, also known 
as Gauss’s or Green’s theorem.

 
V S

F d F dA    
 

�



Stoke’s Theorem

• Consider the curl of the velocity tangent to 
the circle for a rotating object.

 v r    



• We can rewrite this with the following 
vector identity:

• The curl then becomes:

   A B C A C B A B C     
       

     r r r           



• In Cartesian coordinates we see that the first 
term is:

  3x y zr
x y z

  
   

         

  



• The second term is:

   ˆ ˆˆ ˆ ˆ ˆ
x y z x y zr xi yj zk i j k

x y z
      

   
            

 

 



• Therefore, we get the following:

v 2  

• The curl of the velocity is a measure of the 
amount of rotation around a point.



• The integral of the curl over some surface, S
represents the total amount of swirl, like the 
vortex when you drain your tub.

• We can determine the amount of swirl just 
by going around the edge and finding how 
much flow is following the boundary or 
perimeter, P.

• We can express this by the following:

 
S P

F dA F ds    
  
�



Differential Form of Maxwell’s 
Equations

• We can now write Maxwell’s equations as:

t
BEE

o

f












t
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
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


000 



Maxwell’s Equations

• The previous equations are known as 
Maxwell's equations for a vacuum. 

• The equations are slightly different if 
dielectric and magnetic materials are 
present.



Maxwell’s Equations

• The differential form 
of Maxwell's when 
dielectric and 
magnetic materials are 
present are as follows: t

BE

D f



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
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




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One More Differential Operator
• Consider the dot 

product of the 
gradient with itself.

2  
• This is a scalar 

operator called the 
Laplacian.

• In Cartesian 
coordinates it is:

2 2 2
2

2 2 2x y z
  

   
  


