Chapter 29

Faraday's Law

Electromagnetic Induction

- In the middle part of the nineteenth century Michael Faraday formulated his law of induction.
- It had been known for some time that a current could be produced in a wire by a changing magnetic field.
- Faraday showed that the induced electromotive force is directly related to the rate at which the magnetic field lines cut across the path.

Faraday's Law

- Faraday's law of induction can be expressed as:
- The emf is equal to minus the change of the magnetic flux with time.

$$\xi = -\frac{d\Phi_B}{dt}$$

Magnetic Flux

• The magnetic flux is given by:

$\Phi_B \equiv -\int \vec{B} \cdot d\vec{A}$

Faraday's Law

• Therefore the induced emf can be expressed as:

 $\xi = -\frac{d}{dt} \int \vec{B} \cdot d\vec{A}$

Faraday's Law for Simple Cases

• If the magnetic field is spatially uniform and the area is simple enough then the induced emf can be expressed as:

$$\xi = B \frac{dA}{dt}$$

Example

- A rectangular loop of wire has an area equal to its width (x) times its length (L).
- Suppose that the length of the conducting wire loop can be arbitrarily shortened by sliding a conducting rod of length L along its width.
- Furthermore, suppose that a constant magnetic field is moving perpendicular to the rectangular loop.
- Derive an expression for the induced emf in the loop.

A sliding rod of length L in a magnetic field.

Solution

- If we move the conductor along the conducting wires the area of the loop that encloses the magnetic field is changing with time.
- The amount of change is proportional to the velocity that which we move the rod.

• The induced emf depends on the magnitude of the magnetic field and the change of the area of the loop with time.

$$\xi = B \frac{dA}{dt} = BL \frac{dx}{dt}$$

• Since the length L remains constant the width changes as:

 $\frac{dx}{dt} = v$

• Then the induced emf is:

Example

- Suppose the rod in the previous figure is moving at a speed of 5.0 m/s in a direction perpendicular to a 0.80 T magnetic field.
- The conducting rod has a length of 1.6 meters.
- A light bulb replaces the resistor in the figure.
- The resistance of the bulb is 96 ohms.

Example cont.

- Find the emf produced by the circuit,
- the induced current in the circuit,
- the electrical power delivered to the bulb,
- and the energy used by the bulb in 60.0 s.

Solution

• The induced emf is given by Faraday's law:

$\xi = vBL = (5.0 m / s)(0.8T)(1.6m) = 6.4V$

• We can obtain the induced current in the circuit by using Ohm's law.

$$I = \frac{\xi}{R} = \frac{6.4V}{96\Omega} = 0.067 A$$

• The power can now be determined.

$P = I\xi = (0.067 A)(6.4V) = 0.43W$

• Since the power is not changing with time, then the energy is the product of the power and the time.

E = Pt = (0.43W)(60.0s) = 26J

The Emf Induced by a rotating Coil

- Faraday's law of induction states that an emf is induced when the magnetic flux changes over time.
- This can be accomplished
- by changing the magnitude of the magnetic field,
- by changing the cross-sectional area that the flux passes through, or
- by changing the angle between the magnetic field and the area with which it passes.

The Emf Induced by a rotating Coil

- If a coil of *N* turns is made to rotate in a magnetic field then the angle between the B-field and the area of the loop will be changing.
- Faraday's law then becomes:

$$emf = -\frac{d\Phi_B}{dt} = -NAB\left(\frac{d\cos\theta}{dt}\right) = NAB\sin\theta\frac{d\theta}{dt}$$

Angular Speed

• The angular speed can be defined as:

 $\omega = \frac{d\theta}{dt}$

• Then integrating we get that:

 $\theta = \omega t$

The Emf Induced by a rotating Coil

• Substitution of the angular speed into our relation for the emf for a rotating coil gives the following:

$\xi = NAB\omega \sin \omega t$

Example

- The armature of a 60-Hz ac generator rotates in a 0.15-T magnetic field.
- If the area of the coil is 2 x 10⁻² m², how many loops must the coil contain if the peak output is 170 V?

Solution

• The maximum emf occurs when the sin ωt equals one. Therefore:

$$\xi_{\rm max} = NBA\omega$$

• Furthermore, we can calculate the angular speed by noting that the angular frequency is:

$$\omega = 2\pi f = 2\pi (60 \, Hz) = 377 \, s^{-1}$$

• The number of turns is then:

$$N = \frac{\xi_{\text{max}}}{BA\omega} = \frac{170V}{(0.15T)(2.0 \times 10^{-2} \, m^2)(377 \, s^{-1})} = 150$$

Another Form

- Suppose the have a stationary loop in a changing magnetic field.
- Then, since the path of integration around the loop is stationary, we can rewrite Faraday's law.

$$\xi = \oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt}$$

Sliding Conducting Bar

- A bar moving through a uniform field and the equivalent circuit diagram
- Assume the bar has zero resistance
- The work done by the applied force appears as internal energy in the resistor *R*

Lenz's Law

- Faraday's law indicates that the induced emf and the change in flux have opposite algebraic signs
- This has a physical interpretation that has come to be known as **Lenz's law**
- Developed by German physicist Heinrich Lenz

Lenz's Law, cont.

- Lenz's law: the induced current in a loop is in the direction that creates a magnetic field that opposes the change in magnetic flux through the area enclosed by the loop
- The induced current tends to keep the original magnetic flux through the circuit from changing

Induced emf and Electric Fields

- An electric field is created in the conductor as a result of the changing magnetic flux
- Even in the absence of a conducting loop, a changing magnetic field will generate an electric field in empty space
- This induced electric field is nonconservative
 - Unlike the electric field produced by stationary charges

Induced emf and Electric Fields

- The induced electric field is a nonconservative field that is generated by a changing magnetic field
- The field cannot be an electrostatic field because if the field were electrostatic, and hence conservative, the line integral of E·ds would be zero and it isn't

Another Look at Ampere's Law

• Ampere's Law states the following:

Another Look at Ampere's Law

• Thus we can determine the magnetic field around a current carrying wire by integrating around a closed loop that surrounds the wire and the result should be proportional to the current enclosed by the loop.

Another Look at Ampere's Law

- What if however, we place a capacitor in the circuit?
- If we use Ampere's law we see that it fails when we place our loop in between the plates of the capacitor.
- The current in between the plates is zero sense the flow of electrons is zero.
- What do we do now?

Maxwell's Solution

• In 1873 James Clerk Maxwell altered ampere's law so that it could account for the problem of the capacitor.

- The solution to the problem can be seen by recognizing that even though there is no current passing through the capacitor there is an electric flux passing through it.
- As the charge is building up on the capacitor, or if it is oscillating in the case of an ac circuit, the flux is changing with time.

• Therefore, the expression for the magnetic flux around a capacitor is:

$$\oint \vec{B} \cdot d\vec{s} = \mu_o \varepsilon_o \frac{d\Phi_E}{dt}$$

• If there is a dielectric between the plates of a capacitor that has a small conductivity then there will be a small current moving through the capacitor thus:

$$\oint \vec{B} \cdot d\vec{s} = \mu_o I + \mu_o \varepsilon_o \frac{d\Phi_E}{dt}$$

- Maxwell proposed that this equation is valid for any arbitrary system of electric fields, currents, and magnetic fields.
- It is now known as the Ampere-Maxwell Law.
- The last term in the previous equation is known as the displacement current.

Magnetic Flux Though a Closed Surface

• Mathematically, we can express the features of the magnetic field in terms of a modified Gauss Law:

$$\oint_{S} \vec{B} \cdot d\vec{A} = 0$$

Magnetic Flux Though a Closed Surface cont.

- The magnetic field lines entering a closed surface are equal to the number of field lines leaving the closed surface.
- Thus unlike the case of electric fields, there are no sources or sinks for the magnetic field lines.
- Therefore, there can be no magnetic monopoles.

What Have We Learned So Far?

• Gauss's Law for Electricity.

$$\oint_{S} \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\varepsilon_o}$$

• Gauss's Law for Magnetism.

$$\oint_{S} \vec{B} \cdot d\vec{A} = 0$$

What Have We Learned So Far?

- Faraday's Law. $\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt}$
- Maxwell-Ampere's $\oint \vec{B} \cdot d\vec{s} = \mu_o I + \mu_o \varepsilon_o \frac{d\Phi_E}{dt}$ Law.
 - The four previous equations are known as Maxwell's equations.

Differential Calculus

• We can express Maxwell's equations in a different form if we introduce some differential operators.

$$\nabla a = \frac{\partial a_x}{\partial x}\hat{i} + \frac{\partial a_y}{\partial y}\hat{j} + \frac{\partial a_z}{\partial z}\hat{k}$$

$$\nabla \bullet \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \qquad \nabla \times \vec{A} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$$

Gauss's Theorem, or Green's Theorem, or Divergence Theorem

- Consider a closed surface *S* forming a volume *V*.
- Suppose the volume is of an incompressible fluid such as water.
- Imagine that within this volume are an infinite amount of infinitesimal faucets spraying out water.

- The water emitted from each faucet could be represented by the vector function **F**.
- The total water passing through the entire surface would be:

$$\iint_{S} \vec{F} \cdot d\vec{A}$$

- This quantity of water must equal the total amount of water emitted by all the faucets.
- Since the water is diverging outward from the faucets we can write the total volume of water emitted by the faucets as:

 $\int \left(\nabla \cdot \vec{F}\right) d\tau$

• Therefore, the total water diverging from the faucets equals the total water passing through the surface.

$$\int_{V} \left(\nabla \cdot \vec{F} \right) d\tau = \iint_{S} \vec{F} \cdot d\vec{A}$$

• This is the divergence theorem, also known as Gauss's or Green's theorem.

Stoke's Theorem

• Consider the curl of the velocity tangent to the circle for a rotating object.

$$\nabla \times \vec{\mathbf{v}} = \nabla \times \left(\vec{\omega} \times \vec{r} \right)$$

• We can rewrite this with the following vector identity:

$$\vec{A} \times \vec{B} \times \vec{C} = \left(\vec{A} \cdot \vec{C}\right) \vec{B} - \left(\vec{A} \cdot \vec{B}\right) \vec{C}$$

• The curl then becomes:

$$\nabla \times \left(\vec{\omega} \times \vec{r} \right) = \left(\nabla \cdot \vec{r} \right) \vec{\omega} - \left(\vec{\omega} \cdot \nabla \right) \vec{r}$$

• In Cartesian coordinates we see that the first term is:

$$\vec{\omega} \left(\nabla \cdot \vec{r} \right) = \vec{\omega} \left(\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} \right) = 3\vec{\omega}$$

• The second term is:

$$\left(\vec{\omega}\cdot\nabla\right)\vec{r} = \left(\omega_x\frac{\partial}{\partial x} + \omega_y\frac{\partial}{\partial y} + \omega_z\frac{\partial}{\partial z}\right)\left(x\hat{i} + y\hat{j} + z\hat{k}\right) = \omega_x\hat{i} + \omega_y\hat{j} + \omega_z\hat{k}$$

 $= \vec{\omega}$

• Therefore, we get the following:

$$\nabla \times \vec{v} = 2\vec{\omega}$$

• The curl of the velocity is a measure of the amount of rotation around a point.

- The integral of the curl over some surface, *S* represents the total amount of swirl, like the vortex when you drain your tub.
- We can determine the amount of swirl just by going around the edge and finding how much flow is following the boundary or perimeter, *P*.
- We can express this by the following:

$$\int_{S} \left(\nabla \times \vec{F} \right) \cdot d\vec{A} = \prod_{P} \vec{F} \cdot d\vec{s}$$

Differential Form of Maxwell's Equations

• We can now write Maxwell's equations as:

$$\nabla \cdot \vec{E} = \frac{\rho_f}{\varepsilon_o} \qquad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \cdot \vec{B} = 0 \qquad \nabla \times \vec{B} = \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

Maxwell's Equations

- The previous equations are known as Maxwell's equations for a vacuum.
- The equations are slightly different if dielectric and magnetic materials are present.

Maxwell's Equations

• The differential form of Maxwell's when dielectric and magnetic materials are present are as follows:

$$\nabla \cdot \vec{D} = \rho_f$$
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{H} = J_f + \frac{\partial \vec{D}}{\partial t}$$

One More Differential Operator

• Consider the dot product of the gradient with itself.

 $\nabla \cdot \nabla = \nabla^2$

- This is a scalar operator called the Laplacian.
- In Cartesian coordinates it is:

